Xilinx is disclosing this user guide, manual, release note, and/or specification (the "Documentation") to you solely for use in the development of designs to operate with Xilinx hardware devices. You may not reproduce, distribute, republish, download, display, post, or transmit the Documentation in any form or by any means including, but not limited to, electronic, mechanical, photocopying, recording, or otherwise, without the prior written consent of Xilinx. Xilinx expressly disclaims any liability arising out of your use of the Documentation. Xilinx reserves the right, at its sole discretion, to change the Documentation without notice at any time. Xilinx expressly disclaims any liability in connection with technical support or assistance that may be provided to you in connection with the Information.

THE DOCUMENTATION IS DISCLOSED TO YOU “AS-IS” WITH NO WARRANTY OF ANY KIND. XILINX MAKES NO OTHER WARRANTIES, WHETHER EXPRESS, IMPLIED, OR STATUTORY, REGARDING THE DOCUMENTATION, INCLUDING ANY WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NONINFRINGEMENT OF THIRD-PARTY RIGHTS. IN NO EVENT WILL XILINX BE LIABLE FOR ANY CONSEQUENTIAL, INDIRECT, EXEMPLARY, SPECIAL, OR INCIDENTAL DAMAGES, INCLUDING ANY LOSS OF DATA OR LOST PROFITS, ARISING FROM YOUR USE OF THE DOCUMENTATION.

© 2009–2010 Xilinx, Inc. XILINX, the Xilinx logo, Virtex, Spartan, ISE, and other designated brands included herein are trademarks of Xilinx in the United States and other countries. All other trademarks are the property of their respective owners.

Revision History

The following table shows the revision history for this document

<table>
<thead>
<tr>
<th>Date</th>
<th>Version</th>
<th>Revision</th>
</tr>
</thead>
<tbody>
<tr>
<td>2/26/10</td>
<td>v0.9.0</td>
<td>Internal draft</td>
</tr>
<tr>
<td>3/10/10</td>
<td>v1.0</td>
<td>First release</td>
</tr>
<tr>
<td>8/23/10</td>
<td>v1.1</td>
<td>UCFs updated to reflect changes in the FMC-CE board with additional verification</td>
</tr>
</tbody>
</table>
Contents
About This Guide ..1
FMC-CE Card ...1
 Overview ...1
 Features ..1
Appendix A: UCF for SP605 ... 10
Appendix B: UCF for ML605 .. 13
Appendix C: VITA 57.1 FMC LPC (J63) and HPC (J64) Connector Pinout ... 18

Table of Tables
Table 1. Slide Switch FMC connections ..2
Table 2. Linear LED Connections ..3
Table 3. Button FMC Connections ..4
Table 4. FMC Connections for LEDs Adjacent to Push Buttons ..5
Table 5. Rotary Switch FMC Connections ...5
Table 6. LCD FMC Connections ..6
Table 7. Audio FMC Connections ..7
Table 8. SMA FMC Connections ..7
Table 9. Leftmost PMOD FMC Connections ...8
Table 10. Center PMOD FMC Connection ..9
Table 11. Rightmost PMD FMC Connections ..9

Table of Figures
Figure 1. FMC-CE Card with Features Annotated ...1
Figure 2. Slide Switch Schematics ...2
Figure 3. Schematic of LEDs for Both the Linear Array and Rosetta Array ..3
Figure 4. Schematic for Buttons ..4
Figure 5. Rotary Switch Schematic ..5
Figure 6. SMA Schematics ..7
About This Guide
The purpose of this document is to convey the necessary information to the designer to successfully use the capabilities of the FMC-CE I/O expansion card.

Each feature is independently described and contains a connection table. This table includes the name of the signal, its location on the FMC, the voltage at which it must be programmed by the FPGA, and a brief description of its function. Where the term “any” is provided, the FPGA may provide use voltage as the FPGAs signals are passed directly to the device and not through any level shifter.

FMC-CE Card
Overview
The FMC-CE card is meant to be used with a Xilinx demonstration/evaluation board equipped with an FMC connector. This board extends the I/O capabilities of the base platform and provides an I/O consistency among various platforms.

Features
The FMC-CE card provides the following features:

1) Linear array of 8 slide switches
2) Linear array of 8 LEDs co-located with the 8 slide switches
3) Rosetta pattern of 5 push button switches
4) Rosetta pattern of 5 LEDs, co-located with the push button switches

5) A Rotary/push-button switch

6) An LCD display (2x16).

7) Headphone jack (7a), speaker jack (7b) with a volume control (7c).

8) 4 SMA connectors

9) 2 Digilent dual PMOD connectors (9a), 1 Digilent single PMOD connector (9b)

Detailed Description

1. 8 Slide switches: One side of each of the eight slide switches is tied to GND, while the other side is pulled up to 2.5V. There is a 10K series resistor for each switch which enables these signals to be used at lower voltages without damaging the FPGA. These switches are silkscreened SW0-SW7. SW0 is on the right most side.

![Slide Switch Schematics](image)

<table>
<thead>
<tr>
<th>Signal Name</th>
<th>Pin</th>
<th>Voltage</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Switch 0</td>
<td>G33</td>
<td>≤2.5V</td>
<td></td>
</tr>
<tr>
<td>Switch 1</td>
<td>H32</td>
<td>≤2.5V</td>
<td></td>
</tr>
<tr>
<td>Switch 2</td>
<td>H31</td>
<td>≤2.5V</td>
<td></td>
</tr>
<tr>
<td>Switch 3</td>
<td>G31</td>
<td>≤2.5V</td>
<td></td>
</tr>
<tr>
<td>Switch 4</td>
<td>G30</td>
<td>≤2.5V</td>
<td></td>
</tr>
<tr>
<td>Switch 5</td>
<td>H29</td>
<td>≤2.5V</td>
<td></td>
</tr>
<tr>
<td>Switch 6</td>
<td>H28</td>
<td>≤2.5V</td>
<td></td>
</tr>
<tr>
<td>Switch 7</td>
<td>G28</td>
<td>≤2.5V</td>
<td></td>
</tr>
</tbody>
</table>

Table 1. Slide Switch FMC connections

2. There are 8 LED’s in a linear fashion, co-located with the slide switches. Each is tied to GND through a 300 Ohm resistor. LD0 is on the right most side. The LEDs illuminate with voltages as low as LVCMOS12.
Figure 3. Schematic of LEDs for Both the Linear Array and Rosetta Array

<table>
<thead>
<tr>
<th>Signal Name</th>
<th>Pin</th>
<th>Voltage</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>LED linear 0</td>
<td>D27</td>
<td>any</td>
<td>Voltage must be sufficient to cross the “on” threshold – need to verify, as this might be changed from “any” to >= some voltage.</td>
</tr>
<tr>
<td>LED linear 1</td>
<td>D26</td>
<td>any</td>
<td></td>
</tr>
<tr>
<td>LED linear 2</td>
<td>C26</td>
<td>any</td>
<td></td>
</tr>
<tr>
<td>LED linear 3</td>
<td>D24</td>
<td>any</td>
<td></td>
</tr>
<tr>
<td>LED linear 4</td>
<td>D23</td>
<td>any</td>
<td></td>
</tr>
<tr>
<td>LED linear 5</td>
<td>C23</td>
<td>any</td>
<td></td>
</tr>
<tr>
<td>LED linear 6</td>
<td>C22</td>
<td>any</td>
<td></td>
</tr>
<tr>
<td>LED linear 7</td>
<td>D21</td>
<td>any</td>
<td></td>
</tr>
</tbody>
</table>

Table 2. Linear LED Connections
3. The 5 buttons are pulled to GND through a 10K resistor and pulled up to 2.5 V when pressed. When not pressed the button is pulled up to 2.5V. A series resister (10K Ohms) bleeds off excess voltage if the FPGA is programmed to an IO standard below 2.5V. These are marked BTN0-4.

![Figure 4. Schematic for Buttons](image)

Table 3. Button FMC Connections

<table>
<thead>
<tr>
<th>Signal Name</th>
<th>Pin</th>
<th>Voltage</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Button 0</td>
<td>H14</td>
<td>2.5V</td>
<td>Center</td>
</tr>
<tr>
<td>Button 1</td>
<td>G15</td>
<td>2.5V</td>
<td>West</td>
</tr>
<tr>
<td>Button 2</td>
<td>G18</td>
<td>2.5V</td>
<td>North</td>
</tr>
<tr>
<td>Button 3</td>
<td>H13</td>
<td>2.5V</td>
<td>East</td>
</tr>
<tr>
<td>Button 4</td>
<td>G12</td>
<td>2.5V</td>
<td>South</td>
</tr>
</tbody>
</table>

4. Then there are 5 LED's co-located with the buttons (BTN0-BTN4) in a Rosetta pattern. Each LED is pulled to GND via a 300 Ohm resistor. The schematics are show in (2) Linear LEDs

Table 4. Linear LEDs

<table>
<thead>
<tr>
<th>Signal Name</th>
<th>Pin</th>
<th>Voltage</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>LED Rosetta 0</td>
<td>H16</td>
<td>any</td>
<td>Center</td>
</tr>
</tbody>
</table>

Voltage must be sufficient to cross the “on” threshold – need to verify, as this might be changed from “any” to >= some voltage.
<table>
<thead>
<tr>
<th>Signal Name</th>
<th>Pin</th>
<th>Voltage</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>LED Rosetta 1</td>
<td>G16</td>
<td>any</td>
<td>West</td>
</tr>
<tr>
<td>LED Rosetta 2</td>
<td>G19</td>
<td>any</td>
<td>North</td>
</tr>
<tr>
<td>LED Rosetta 3</td>
<td>H17</td>
<td>any</td>
<td>East</td>
</tr>
<tr>
<td>LED Rosetta 4</td>
<td>G13</td>
<td>any</td>
<td>South</td>
</tr>
</tbody>
</table>

Table 4. FMC Connections for LEDs Adjacent to Push Buttons

5. Rotary Push-button LED linear labeled ROT-1

![Rotary Switch Schematic](image)

Figure 5. Rotary Switch Schematic

<table>
<thead>
<tr>
<th>Signal Name</th>
<th>Pin</th>
<th>Voltage</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rot-A</td>
<td>G21</td>
<td>2.5V</td>
<td>Reference waveform</td>
</tr>
<tr>
<td>Rot-B</td>
<td>H19</td>
<td>2.5V</td>
<td>Quadrature waveform</td>
</tr>
<tr>
<td>Rot-Switch</td>
<td>H20</td>
<td>2.5V</td>
<td>Activated by pressing the knob</td>
</tr>
</tbody>
</table>

Table 5. Rotary Switch FMC Connections

6. LCD (ST Micro ST7066) display with LVCMOS25 inputs. This dual row 16 character per row uses an industry standard controller (Samsung KS0066U) and sports a 4 or 8 bit data interface. No backlight is provided for the LCD, and the contrast is fixed.

This LCD supports 5x8 and 5x10 dot matrix characters and a programmable 4 or 8 bit MPU interface. Support for custom characters is provided as is a wide range of instruction functions such as clear, cursor home, display on/off, cursor shift, and display shift.

<table>
<thead>
<tr>
<th>Signal Name</th>
<th>Pin</th>
<th>Voltage</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>LCD Data 0</td>
<td>G22</td>
<td>2.5V</td>
<td>Four low order bi-directional tristate data bus pins. Used for data transfer and receive between the MPU and the ST7066. These pins are not used during 4-bit operation.</td>
</tr>
<tr>
<td>LCD Data 1</td>
<td>H22</td>
<td>2.5V</td>
<td>As above</td>
</tr>
<tr>
<td>LCD Data 2</td>
<td>H23</td>
<td>2.5V</td>
<td>As above</td>
</tr>
</tbody>
</table>
Table 6. LCD FMC Connections

7. Both the (a and b) stereo head set jack and a mono speaker jack are controlled via potentiometer volume control (7c). Dual DAC121S101s (12-bit) digital to analog converters (DACs) provide stereo input into a LM4838 2W Stereo Audio Amplifier. Each 12-bit DAC supports a data rate of up to 30MHz and is compatible with SPI, QSPI, NICROWIRE, and DSP interfaces. The effective conversion rate is has a conversion frequency of about 1.75MHz – well above the audio range. Both DAC outputs (right and left channels) are then fed in the Audio Amplifier and are available through a mono speaker connector (left channel only) on J5, and a stereo headphone connector on J6. Both output volumes are controlled via the potentiometer R47, which is clearly labeled on the board.

Key specifications for part DAC121S101 from National Semiconductor:

DNL: +0.25, -0.15 LSB (typ)

Output Settling Time: 8 us (typ)

Zero Code Error: 4mV

Full Scale Error: -0.06%
Table 7. Audio FMC Connections

<table>
<thead>
<tr>
<th>Signal Name</th>
<th>Pin</th>
<th>Voltage</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Audio DAC sync right</td>
<td>G36</td>
<td>2.5V</td>
<td>Marks start of data frame</td>
</tr>
</tbody>
</table>

8. There are 4 SMA audio connectors J1 through J4. The silkscreen calls out the positive and negative sides for Rx and Tx, however, these are straight through connections to the FMC, which allows the designer to use them as he/she sees fit.

Figure 6. SMA Schematics

<table>
<thead>
<tr>
<th>Signal Name</th>
<th>Pin</th>
<th>Voltage</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SMA-1</td>
<td>C2</td>
<td>any</td>
<td>J1 – north west</td>
</tr>
<tr>
<td>SMA-2</td>
<td>C3</td>
<td>any</td>
<td>J2 – north east</td>
</tr>
<tr>
<td>SMA-3</td>
<td>C6</td>
<td>any</td>
<td>J3 – south west</td>
</tr>
<tr>
<td>SMA-4</td>
<td>C7</td>
<td>any</td>
<td>J4 – south east</td>
</tr>
</tbody>
</table>

Table 8. SMA FMC Connections

9. PMOD connectors: Two 12 pin “Dual” PMOD connectors are available on JA and JC, and a single 6 pin PMOD is available on JB. These connectors are intended as connection points for Digilent’s expansion boards. The voltage, as always, represents the FPGA’s input and output voltage. There are voltage translators on the FMC-CE card that translate the PMOD’s I/O to 3.3V.

Figure 7. PMOD Connector and Schematics
Leftmost PMOD connector (dual)

<table>
<thead>
<tr>
<th>Signal Name</th>
<th>Pin</th>
<th>Voltage</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PMOD-JA-1</td>
<td>H11</td>
<td>2.5V</td>
<td>I/O</td>
</tr>
<tr>
<td>PMOD-JA-2</td>
<td>H10</td>
<td>2.5V</td>
<td>I/O</td>
</tr>
<tr>
<td>PMOD-JA-3</td>
<td>H8</td>
<td>2.5V</td>
<td>I/O</td>
</tr>
<tr>
<td>PMOD-JA-4</td>
<td>H7</td>
<td>2.5V</td>
<td>I/O</td>
</tr>
<tr>
<td>PMOD-JA-5</td>
<td>--</td>
<td>--</td>
<td>Ground</td>
</tr>
<tr>
<td>PMOD-JA-6</td>
<td>--</td>
<td>--</td>
<td>3.3V Power</td>
</tr>
<tr>
<td>PMOD-JA-7</td>
<td>G10</td>
<td>2.5V</td>
<td>I/O</td>
</tr>
<tr>
<td>PMOD-JA-8</td>
<td>G9</td>
<td>2.5V</td>
<td>I/O</td>
</tr>
<tr>
<td>PMOD-JA-9</td>
<td>G7</td>
<td>2.5V</td>
<td>I/O</td>
</tr>
<tr>
<td>PMOD-JA-10</td>
<td>G6</td>
<td>2.5V</td>
<td>I/O</td>
</tr>
<tr>
<td>PMOD-JA-11</td>
<td>--</td>
<td>--</td>
<td>Ground</td>
</tr>
<tr>
<td>PMOD-JA-12</td>
<td>--</td>
<td>--</td>
<td>3.3V Power</td>
</tr>
</tbody>
</table>

Table 9. Leftmost PMOD FMC Connections

Center PMOD connector (dual)

<table>
<thead>
<tr>
<th>Signal Name</th>
<th>Pin</th>
<th>Voltage</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PMOD-JB-1</td>
<td>D14</td>
<td>2.5V</td>
<td>I/O</td>
</tr>
<tr>
<td>PMOD-JB-2</td>
<td>D12</td>
<td>2.5V</td>
<td>I/O</td>
</tr>
<tr>
<td>PMOD-JB-3</td>
<td>C11</td>
<td>2.5V</td>
<td>I/O</td>
</tr>
<tr>
<td>PMOD-JB-4</td>
<td>D9</td>
<td>2.5V</td>
<td>I/O</td>
</tr>
<tr>
<td>PMOD-JB-5</td>
<td>--</td>
<td>--</td>
<td>Ground</td>
</tr>
<tr>
<td>PMOD-JB-6</td>
<td>--</td>
<td>--</td>
<td>3.3V Power</td>
</tr>
<tr>
<td>PMOD-JB-7</td>
<td>C14</td>
<td>2.5V</td>
<td>I/O</td>
</tr>
<tr>
<td>PMOD-JB-8</td>
<td>D11</td>
<td>2.5V</td>
<td>I/O</td>
</tr>
<tr>
<td>PMOD-JB-9</td>
<td>C10</td>
<td>2.5V</td>
<td>I/O</td>
</tr>
<tr>
<td>PMOD-JB-10</td>
<td>D8</td>
<td>2.5V</td>
<td>I/O</td>
</tr>
<tr>
<td>Signal Name</td>
<td>Pin</td>
<td>Voltage</td>
<td>Description</td>
</tr>
<tr>
<td>------------</td>
<td>-----</td>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>PMOD-JB-11</td>
<td>--</td>
<td>Gnd</td>
<td>Ground</td>
</tr>
<tr>
<td>PMOD-JB-12</td>
<td>--</td>
<td>--</td>
<td>3.3V Power</td>
</tr>
</tbody>
</table>

Table 10. Center PMOD FMC Connection

Rightmost PMOD connector (single)

<table>
<thead>
<tr>
<th>Signal Name</th>
<th>Pin</th>
<th>Voltage</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PMOD-JC-1</td>
<td>D18</td>
<td>2.5V</td>
<td>I/O</td>
</tr>
<tr>
<td>PMOD-JC-2</td>
<td>D17</td>
<td>2.5V</td>
<td>I/O</td>
</tr>
<tr>
<td>PMOD-JC-3</td>
<td>D15</td>
<td>2.5V</td>
<td>I/O</td>
</tr>
<tr>
<td>PMOD-JC-4</td>
<td>C15</td>
<td>2.5V</td>
<td>I/O</td>
</tr>
<tr>
<td>PMOD-JC-5</td>
<td>--</td>
<td>--</td>
<td>Ground</td>
</tr>
<tr>
<td>PMOD-JC-6</td>
<td>--</td>
<td>--</td>
<td>3.3V Power</td>
</tr>
</tbody>
</table>

Table 11. Rightmost PMD FMC Connections
Appendix A: UCF for SP605
#
User Constraint File for FMC-CE card when attached to a Xilinx SP605
pin locations only!
#
2/19/2010
#
#
Device
spartan6 xc6slx45t fgg484 SPEED_GRADE = -2 ?ES silicon boards?
spartan6 xc6slx45t fgg484 SPEED_GRADE = -3 ?production silicon boards?
#
*** peripherals ***
#
LCD
NET "LCD_data_pins<0>" LOC = "R8"; # gpio_lcd_db8
NET "LCD_data_pins<1>" LOC = "R11";
NET "LCD_data_pins<2>" LOC = "T11";
NET "LCD_data_pins<3>" LOC = "V7";
NET "LCD_data_pins<4>" LOC = "W7";
NET "LCD_data_pins<5>" LOC = "V11";
NET "LCD_data_pins<6>" LOC = "W11";
NET "LCD_data_pins<7>" LOC = "W14";
NET "LCD_data_pins<>" IOSTANDARD = LVCMOS25 | DRIVE = 4 | SLEW = SLOW;

NET "LCD_E_pin" LOC = "C17" | PULLDOWN | IOSTANDARD = LVCMOS25;
NET "LCD_RS_pin" LOC = "A17" | IOSTANDARD = LVCMOS25;
NET "LCD_RW_pin" LOC = "Y11" | IOSTANDARD = LVCMOS25;

linear LEDs (8)
NET "LED_linear_pins<7>" LOC = "AB11";
NET "LED_linear_pins<6>" LOC = "T12";
NET "LED_linear_pins<5>" LOC = "U12";
NET "LED_linear_pins<4>" LOC = "U9";
NET "LED_linear_pins<3>" LOC = "V9";
NET "LED_linear_pins<2>" LOC = "AA10";
NET "LED_linear_pins<1>" LOC = "U14";
NET "LED_linear_pins<0>" LOC = "U13";
NET "LED_linear_pins<>" IOSTANDARD = LVCMOS25 | DRIVE = 4 | SLEW = SLOW;

rosetta leds (5)
NET "LED_rosetta_pins<0>" LOC = "H14"; # CONN_BUT_LED0 - center
NET "LED_rosetta_pins<1>" LOC = "G13"; # CONN_BUT_LED1 - west
NET "LED_rosetta_pins<2>" LOC = "A5"; # CONN_BUT_LED2 - north
NET "LED_rosetta_pins<3>" LOC = "G15"; # CONN_BUT_LED3 - east
NET "LED_rosetta_pins<4>" LOC = "A20"; # CONN_BUT_LED4 - south
NET "LED_rosetta_pins<>" IOSTANDARD = LVCMOS25# CONN_BUT-all
rosetta buttons (5)
NET "button_pins<0>" LOC = "A2"; # CONN_BUT0 - center
NET "button_pins<1>" LOC = "H13"; # CONN_BUT1 - west
NET "button_pins<2>" LOC = "C5"; # CONN_BUT2 - north
NET "button_pins<3>" LOC = "B2"; # CONN_BUT3 - east
NET "button_pins<4>" LOC = "B20"; # CONN_BUT4 - south
NET "button_pins<*>": IOSTANDARD = LVCMOS25 # CONN_BUT-all

slide switches (8)
NET "switch_pins<0>" LOC = "U16"; # CONN_SLDSW0 - rightmost
NET "switch_pins<1>" LOC = "AB16"; # CONN_SLDSW1
NET "switch_pins<2>" LOC = "AA16"; # CONN_SLDSW2
NET "switch_pins<3>" LOC = "U15"; # CONN_SLDSW3
NET "switch_pins<4>" LOC = "T15"; # CONN_SLDSW4
NET "switch_pins<5>" LOC = "AB14"; # CONN_SLDSW5
NET "switch_pins<6>" LOC = "AA14"; # CONN_SLDSW6
NET "switch_pins<7>" LOC = "Y14"; # CONN_SLDSW7 - leftmost
NET "switch_pins<*>": IOSTANDARD = LVCMOS25; # CONN_SLDSW-all

ROTARY ENCODER & SWITCH
NET "ROTARY_ENC_A_pin" LOC="R9" | IOSTANDARD = LVCMOS25;
NET "ROTARY_ENC_B_pin" LOC="D18" | IOSTANDARD = LVCMOS25;
NET "ROTARY_ENC_SWITCH_pin" LOC="D19" | IOSTANDARD = LVCMOS25;

SPI audio dac left
NET "AUDIO_DAC_left_MOSI_pin" LOC="AB17" | IOSTANDARD = LVCMOS25;
NET "AUDIO_DAC_left_SCK_pin" LOC="W17" | IOSTANDARD = LVCMOS25;
NET "AUDIO_DAC_left_SS_pin" LOC="Y18" | IOSTANDARD = LVCMOS25;

SPI audio dac right
NET "AUDIO_DAC_right_MOSI_pin" LOC="Y15" | IOSTANDARD = LVCMOS25;
NET "AUDIO_DAC_right_SCK_pin" LOC="AB15" | IOSTANDARD = LVCMOS25;
NET "AUDIO_DAC_right_SS_pin" LOC="Y17" | IOSTANDARD = LVCMOS25;

Aux I/O 8 bit 2 x 4 connector JA
NET "AUX_JA<1>" LOC="A19";
NET "AUX_JA<2>" LOC="C19";
NET "AUX_JA<3>" LOC="F9";
NET "AUX_JA<4>" LOC="G8";
NET "AUX_JA<7>" LOC="A18";
NET "AUX_JA<8>" LOC="B18";
NET "AUX_JA<9>" LOC="F10";
NET "AUX_JA<10>" LOC="G9";
NET "AUX_JA<*>": IOSTANDARD = LVCMOS25;

Aux I/O 8 bit 2 x 4 connector JB
NET "AUX_JB<1>" LOC="F7";
NET "AUX_JB<2>" LOC="A4";
NET "AUX_JB<3>" LOC="D5";
NET "AUX_JB<4>" LOC="F15";
Aux I/O 4 bit 1 x 4 connector JC
NET "AUX_JC<1>" LOC="F17";
NET "AUX_JC<2>" LOC="G16";
NET "AUX_JC<3>" LOC="F8";
NET "AUX_JC<4>" LOC="H11";
NET "AUX_JC<*>" IOSTANDARD = LVCMOS25;
Appendix B: UCF for ML605

As there are two FMC connectors on the board: J63 and J64, there are two possible connections for each signal, depending on which connector the FMC-CE is plugged in to.

When plugged into J63:

```
# User Constraint File for FMC-CE card when attached to a Xilinx ML605 – J63
# pin locations only!
#
# 2/26/2010
#
#
# Device
# Virtex6 xc6vlx240t fgg1156 SPEED_GRADE = -1
#
# *** peripherals ***
#
# LCD
NET "LCD_data_pins<0>" LOC = "R29"; # gpio_lcd_db8
NET "LCD_data_pins<1>" LOC = "M30";
NET "LCD_data_pins<2>" LOC = "N30";
NET "LCD_data_pins<3>" LOC = "N27";
NET "LCD_data_pins<4>" LOC = "P27";
NET "LCD_data_pins<5>" LOC = "R26";
NET "LCD_data_pins<6>" LOC = "T26";
NET "LCD_data_pins<7>" LOC = "P31";
NET "LCD_data_pins<>" IOSTANDARD = LVCMOS25 | DRIVE = 4 | SLEW = SLOW;

NET "LCD_E_pin" LOC = "C33" | PULLDOWN | IOSTANDARD = LVCMOS25;
NET "LCD_RS_pin" LOC = "B34" | IOSTANDARD = LVCMOS25;
NET "LCD_RW_pin" LOC = "N28" | IOSTANDARD = LVCMOS25;

# linear LEDs (8)
NET "LED_linear_pins<7>" LOC = "N29 ";
NET "LED_linear_pins<6>" LOC = "L29 ";
NET "LED_linear_pins<5>" LOC = "L30 ";
NET "LED_linear_pins<4>" LOC = "R28 ";
NET "LED_linear_pins<3>" LOC = "R27 ";
NET "LED_linear_pins<2>" LOC = "R31 ";
NET "LED_linear_pins<1>" LOC = "L33 ";
NET "LED_linear_pins<0>" LOC = "M32 ";
NET "LED_linear_pins<>" IOSTANDARD = LVCMOS25 | DRIVE = 4 | SLEW = SLOW;

# rosetta leds (5)
NET "LED_rosetta_pins<0>" LOC = "D31 "; # CONN_BUT_LED0 - center
NET "LED_rosetta_pins<1>" LOC = "E33 "; # CONN_BUT_LED1 - west
NET "LED_rosetta_pins<2>" LOC = "B33";  # CONN_BUT_LED2 - north
NET "LED_rosetta_pins<3>" LOC = "D32";  # CONN_BUT_LED3 - east
NET "LED_rosetta_pins<4>" LOC = "K29";  # CONN_BUT_LED4 - south
NET "LED_rosetta_pins<*>" IOSTANDARD = LVCMOS25 # CONN_BUT-all

# rosetta buttons (5)
NET "button_pins<0>" LOC = "H32";  # CONN_BUT0 - center
NET "button_pins<1>" LOC = "E32";  # CONN_BUT1 - west
NET "button_pins<2>" LOC = "A33";  # CONN_BUT2 - north
NET "button_pins<3>" LOC = "G32";  # CONN_BUT3 - east
NET "button_pins<4>" LOC = "J30";  # CONN_BUT4 - south
NET "button_pins<*>" IOSTANDARD = LVCMOS25 # CONN_BUT-all

# slide switches (8)
NET "switch_pins<0>" LOC = "M31";  # CONN_SLDSW0 - rightmost
NET "switch_pins<1>" LOC = "M33";  # CONN_SLDSW1
NET "switch_pins<2>" LOC = "N33";  # CONN_SLDSW2
NET "switch_pins<3>" LOC = "P34";  # CONN_SLDSW3
NET "switch_pins<4>" LOC = "N34";  # CONN_SLDSW4
NET "switch_pins<5>" LOC = "P32";  # CONN_SLDSW5
NET "switch_pins<6>" LOC = "N32";  # CONN_SLDSW6
NET "switch_pins<7>" LOC = "P30";  # CONN_SLDSW7 - leftmost
NET "switch_pins<*>" IOSTANDARD = LVCMOS25; # CONN_SLDSW-all

# ROTARY ENCODER & SWITCH
NET "ROTARY_ENC_A_pin" LOC="P29" | IOSTANDARD = LVCMOS25;
NET "ROTARY_ENC_B_pin" LOC="C32" | IOSTANDARD = LVCMOS25;
NET "ROTARY_ENC_SWITCH_pin" LOC="B32" | IOSTANDARD = LVCMOS25;

# SPI audio dac left
NET "AUDIO_DAC_left_MOSI_pin" LOC="K31" | IOSTANDARD = LVCMOS25;
NET "AUDIO_DAC_left_SCK_pin" LOC="N25" | IOSTANDARD = LVCMOS25;
NET "AUDIO_DAC_left_SS_pin" LOC="M25" | IOSTANDARD = LVCMOS25;

# SPI audio dac right
NET "AUDIO_DAC_right_MOSI_pin" LOC="M26" | IOSTANDARD = LVCMOS25;
NET "AUDIO_DAC_right_SCK_pin" LOC="M27" | IOSTANDARD = LVCMOS25;
NET "AUDIO_DAC_right_SS_pin" LOC="K32" | IOSTANDARD = LVCMOS25;

# Aux I/O 8 bit 2 x 4 connector JA
NET "AUX_JA<1>" LOC="J29";
NET "AUX_JA<2>" LOC="K28";
NET "AUX_JA<3>" LOC="H30";
NET "AUX_JA<4>" LOC="G31";
NET "AUX_JA<7>" LOC="J32";
NET "AUX_JA<8>" LOC="J31";
NET "AUX_JA<9>" LOC="K27";
NET "AUX_JA<10>" LOC="K26";
NET "AUX_JA<*>" IOSTANDARD = LVCMOS25;
# Aux I/O 8 bit 2 x 4 connector JB
NET "AUX_JB<1>" LOC="L25";
NET "AUX_JB<2>" LOC="H33";
NET "AUX_JB<3>" LOC="J34";
NET "AUX_JB<4>" LOC="E31";
NET "AUX_JB<7>" LOC="F30";
NET "AUX_JB<8>" LOC="H34";
NET "AUX_JB<9>" LOC="K33";
NET "AUX_JB<10>" LOC="F31";
NET "AUX_JB<*>" IOSTANDARD = LVCMOS25;

# Aux I/O 4 bit 1 x 4 connector JC
NET "AUX_JC<1>" LOC="C34";
NET "AUX_JC<2>" LOC="D34";
NET "AUX_JC<3>" LOC="L26";
NET "AUX_JC<4>" LOC="G30";
NET "AUX_JC<*>" IOSTANDARD = LVCMOS25;

# SMA connector
NET "DIFSIG_1_p" LOC = "D1";
NET "DIFSIG_1_n" LOC = "D2";
NET "DIFSIG_2_p" LOC = "G3";
NET "DIFSIG_2_n" LOC = "G4";

When plugged into J64:

#
# User Constraint File for FMC-CE card when attached to a Xilinx ML605 – J64
# pin locations only!
#
# 2/26/2010
#
#
#
# Device
# Virtex6 xc6vlx240t fgg1156 SPEED_GRADE = -1
#
# *** peripherals ***
#
# LCD
NET "LCD_data_pins<0>" LOC = "AL24";  # gpio_lcd_db8
NET "LCD_data_pins<1>" LOC = "AN25";
NET "LCD_data_pins<2>" LOC = "AN24";
NET "LCD_data_pins<3>" LOC = "AP27";
NET "LCD_data_pins<4>" LOC = "AP26";
NET "LCD_data_pins<5>" LOC = "AN29";
NET "LCD_data_pins<6>" LOC = "AP29";
NET "LCD_data_pins<7>" LOC = "AN28";
NET "LCD_data_pins<*>" IOSTANDARD = LVCMOS25 | DRIVE = 4 | SLEW = SLOW;

NET "LCD_E_pin" LOC = "AN19" | PULLDOWN | IOSTANDARD = LVCMOS25;
NET "LCD_RS_pin" LOC = "AN20" | IOSTANDARD = LVCMOS25;
NET "LCD_RW_pin" LOC = "AN27" | IOSTANDARD = LVCMOS25;

# linear LEDs (8)
NET "LED_linear_pins<7>" LOC = "AM27";
NET "LED_linear_pins<6>" LOC = "AH25";
NET "LED_linear_pins<5>" LOC = "AJ25";
NET "LED_linear_pins<4>" LOC = "AL26";
NET "LED_linear_pins<3>" LOC = "AM26";
NET "LED_linear_pins<2>" LOC = "AP30";
NET "LED_linear_pins<1>" LOC = "AM25";
NET "LED_linear_pins<0>" LOC = "AL25";
NET "LED_linear_pins<*>" IOSTANDARD = LVCMOS25 | DRIVE = 4 | SLEW = SLOW;

# rosetta LEDs (5)
NET "LED_rosetta_pins<0>" LOC = "AM22";  # CONN_BUT_LED0 - center
NET "LED_rosetta_pins<1>" LOC = "AL21";  # CONN_BUT_LED1 - west
NET "LED_rosetta_pins<2>" LOC = "AN23";  # CONN_BUT_LED2 - north
NET "LED_rosetta_pins<3>" LOC = "AN22";  # CONN_BUT_LED3 - east
NET "LED_rosetta_pins<4>" LOC = "AJ22";  # CONN_BUT_LED4 - south
NET "LED_rosetta_pins<*>" IOSTANDARD = LVCMOS25 # CONN_BUT-all

# rosetta Buttons (5)
NET "button_pins<0>" LOC = "AJ21";  # CONN_BUT0 - center
NET "button_pins<1>" LOC = "AM21";  # CONN_BUT1 - west
NET "button_pins<2>" LOC = "AP22";  # CONN_BUT2 - north
NET "button_pins<3>" LOC = "AK21";  # CONN_BUT3 - east
NET "button_pins<4>" LOC = "AK22";  # CONN_BUT4 - south
NET "button_pins<*>" IOSTANDARD = LVCMOS25 # CONN_BUT-all

# slide switches (8)
NET "switch_pins<0>" LOC = "AL29";  # CONN_SLDSW0 - rightmost
NET "switch_pins<1>" LOC = "AJ27";  # CONN_SLDSW1
NET "switch_pins<2>" LOC = "AK27";  # CONN_SLDSW2
NET "switch_pins<3>" LOC = "AK28";  # CONN_SLDSW3
NET "switch_pins<4>" LOC = "AL28";  # CONN_SLDSW4
NET "switch_pins<5>" LOC = "AM30";  # CONN_SLDSW5
NET "switch_pins<6>" LOC = "AN30";  # CONN_SLDSW6
NET "switch_pins<7>" LOC = "AM28";  # CONN_SLDSW7 - leftmost
NET "switch_pins<*>" IOSTANDARD = LVCMOS25; # CONN_SLDSW-all

# ROTARY ENCODER & SWITCH
NET "ROTARY_ENC_A_pin" LOC="AK23" | IOSTANDARD = LVCMOS25;
NET "ROTARY_ENC_B_pin" LOC="AM23" | IOSTANDARD = LVCMOS25;
NET "ROTARY_ENC_SWITCH_pin" LOC="AL23" | IOSTANDARD = LVCMOS25;

# SPI audio dac left
NET "AUDIO_DAC_left_MOSI_pin" LOC="AH24" | IOSTANDARD = LVCMOS25;
NET "AUDIO_DAC_left_SCK_pin" LOC="AK25" | IOSTANDARD = LVCMOS25;
NET "AUDIO_DAC_left_SS_pin" LOC="AG26" | IOSTANDARD = LVCMOS25;

# SPI audio dac right
NET "AUDIO_DAC_right_MOSI_pin" LOC="AJ24" | IOSTANDARD = LVCMOS25;
NET "AUDIO_DAC_right_SCK_pin" LOC="AK24" | IOSTANDARD = LVCMOS25;
NET "AUDIO_DAC_right_SS_pin" LOC="AH23" | IOSTANDARD = LVCMOS25;

# Aux I/O 8 bit 2 x 4 connector JA
NET "AUX_JA<1>" LOC="AE19";
NET "AUX_JA<2>" LOC="AF19";
NET "AUX_JA<3>" LOC="AD20";
NET "AUX_JA<4>" LOC="AC20";
NET "AUX_JA<7>" LOC="AD19";
NET "AUX_JA<8>" LOC="AC19";
NET "AUX_JA<9>" LOC="AF21";
NET "AUX_JA<10>" LOC="AF20";
NET "AUX_JA<*>" IOSTANDARD = LVCMOS25;

# Aux I/O 8 bit 2 x 4 connector JB
NET "AUX JB<1>" LOC="AM18";
NET "AUX JB<2>" LOC="AH22";
NET "AUX JB<3>" LOC="AG21";
NET "AUX JB<4>" LOC="AL19";
NET "AUX JB<7>" LOC="AM20";
NET "AUX JB<8>" LOC="AG22";
NET "AUX JB<9>" LOC="AG20";
NET "AUX JB<10>" LOC="AK19";
NET "AUX JB<*>" IOSTANDARD = LVCMOS25;

# Aux I/O 4 bit 1 x 4 connector JC
NET "AUX_JC<1>" LOC="AN18";
NET "AUX_JC<2>" LOC="AP19";
NET "AUX_JC<3>" LOC="AL18";
NET "AUX_JC<4>" LOC="AL20";
NET "AUX_JC<*>" IOSTANDARD = LVCMOS25;

# SMA connector
NET "DIFSIG_1_p" LOC = "AB1";
NET "DIFSIG_1_n" LOC = "AB2";
NET "DIFSIG_2_p" LOC = "AC3";
NET "DIFSIG_2_n" LOC = "AC4";
## Appendix C: VITA 57.1 FMC LPC (J63) and HPC (J64) Connector Pinout

<table>
<thead>
<tr>
<th>NET</th>
<th>LOC</th>
<th>Pin Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>&quot;FMC_HPC_CLK0_M2C_N&quot;</td>
<td>&quot;K23&quot;</td>
<td>H5 on J64</td>
</tr>
<tr>
<td>&quot;FMC_HPC_CLK0_M2C_P&quot;</td>
<td>&quot;K24&quot;</td>
<td>H4 on J64</td>
</tr>
<tr>
<td>&quot;FMC_HPC_CLK1_M2C_N&quot;</td>
<td>&quot;AP21&quot;</td>
<td>G3 on J64</td>
</tr>
<tr>
<td>&quot;FMC_HPC_CLK1_M2C_P&quot;</td>
<td>&quot;AP20&quot;</td>
<td>G2 on J64</td>
</tr>
<tr>
<td>&quot;FMC_HPC_CLK2_M2C_IO_N&quot;</td>
<td>&quot;AC30&quot;</td>
<td>15 on U83</td>
</tr>
<tr>
<td>&quot;FMC_HPC_CLK2_M2C_IO_P&quot;</td>
<td>&quot;AD30&quot;</td>
<td>16 on U83</td>
</tr>
<tr>
<td>&quot;FMC_HPC_CLK2_M2C_MGT_C_N&quot;</td>
<td>&quot;AB5&quot;</td>
<td>2 on series C399 0.1uF</td>
</tr>
<tr>
<td>&quot;FMC_HPC_CLK2_M2C_MGT_C_P&quot;</td>
<td>&quot;AB6&quot;</td>
<td>2 on series C398 0.1uF</td>
</tr>
<tr>
<td>&quot;FMC_HPC_CLK3_M2C_IO_N&quot;</td>
<td>&quot;AF34&quot;</td>
<td>J3 on J64</td>
</tr>
<tr>
<td>&quot;FMC_HPC_CLK3_M2C_IO_P&quot;</td>
<td>&quot;AE34&quot;</td>
<td>J2 on J64</td>
</tr>
<tr>
<td>&quot;FMC_HPC_CLK3_M2C_MGT_C_N&quot;</td>
<td>&quot;AH5&quot;</td>
<td>2 on series C397 0.1uF</td>
</tr>
<tr>
<td>&quot;FMC_HPC_CLK3_M2C_MGT_C_P&quot;</td>
<td>&quot;AH6&quot;</td>
<td>2 on series C396 0.1uF</td>
</tr>
<tr>
<td>&quot;FMC_HPC_DP0_C2M_N&quot;</td>
<td>&quot;AB2&quot;</td>
<td>C3 on J64</td>
</tr>
<tr>
<td>&quot;FMC_HPC_DP0_C2M_P&quot;</td>
<td>&quot;AB1&quot;</td>
<td>C2 on J64</td>
</tr>
<tr>
<td>&quot;FMC_HPC_DP0_M2C_N&quot;</td>
<td>&quot;AC4&quot;</td>
<td>C7 on J64</td>
</tr>
<tr>
<td>&quot;FMC_HPC_DP0_M2C_P&quot;</td>
<td>&quot;AC3&quot;</td>
<td>C6 on J64</td>
</tr>
<tr>
<td>&quot;FMC_HPC_DP1_C2M_N&quot;</td>
<td>&quot;AD2&quot;</td>
<td>A23 on J64</td>
</tr>
<tr>
<td>&quot;FMC_HPC_DP1_C2M_P&quot;</td>
<td>&quot;AD1&quot;</td>
<td>A22 on J64</td>
</tr>
<tr>
<td>&quot;FMC_HPC_DP1_M2C_N&quot;</td>
<td>&quot;AE4&quot;</td>
<td>A3 on J64</td>
</tr>
<tr>
<td>&quot;FMC_HPC_DP1_M2C_P&quot;</td>
<td>&quot;AE3&quot;</td>
<td>A2 on J64</td>
</tr>
<tr>
<td>&quot;FMC_HPC_DP2_C2M_N&quot;</td>
<td>&quot;AF2&quot;</td>
<td>A27 on J64</td>
</tr>
<tr>
<td>&quot;FMC_HPC_DP2_C2M_P&quot;</td>
<td>&quot;AF1&quot;</td>
<td>A26 on J64</td>
</tr>
<tr>
<td>&quot;FMC_HPC_DP2_M2C_N&quot;</td>
<td>&quot;AF6&quot;</td>
<td>A7 on J64</td>
</tr>
<tr>
<td>&quot;FMC_HPC_DP2_M2C_P&quot;</td>
<td>&quot;AF5&quot;</td>
<td>A6 on J64</td>
</tr>
<tr>
<td>&quot;FMC_HPC_DP3_C2M_N&quot;</td>
<td>&quot;AH2&quot;</td>
<td>A31 on J64</td>
</tr>
<tr>
<td>&quot;FMC_HPC_DP3_C2M_P&quot;</td>
<td>&quot;AH1&quot;</td>
<td>A30 on J64</td>
</tr>
<tr>
<td>&quot;FMC_HPC_DP3_M2C_N&quot;</td>
<td>&quot;AG4&quot;</td>
<td>A11 on J64</td>
</tr>
<tr>
<td>&quot;FMC_HPC_DP3_M2C_P&quot;</td>
<td>&quot;AG3&quot;</td>
<td>A10 on J64</td>
</tr>
<tr>
<td>&quot;FMC_HPC_DP4_C2M_N&quot;</td>
<td>&quot;AK2&quot;</td>
<td>A35 on J64</td>
</tr>
<tr>
<td>&quot;FMC_HPC_DP4_C2M_P&quot;</td>
<td>&quot;AK1&quot;</td>
<td>A34 on J64</td>
</tr>
<tr>
<td>&quot;FMC_HPC_DP4_M2C_N&quot;</td>
<td>&quot;AJ4&quot;</td>
<td>A15 on J64</td>
</tr>
<tr>
<td>&quot;FMC_HPC_DP4_M2C_P&quot;</td>
<td>&quot;AJ3&quot;</td>
<td>A14 on J64</td>
</tr>
<tr>
<td>&quot;FMC_HPC_DP5_C2M_N&quot;</td>
<td>&quot;AM2&quot;</td>
<td>A39 on J64</td>
</tr>
<tr>
<td>&quot;FMC_HPC_DP5_C2M_P&quot;</td>
<td>&quot;AM1&quot;</td>
<td>A38 on J64</td>
</tr>
<tr>
<td>&quot;FMC_HPC_DP5_M2C_N&quot;</td>
<td>&quot;AL4&quot;</td>
<td>A19 on J64</td>
</tr>
<tr>
<td>&quot;FMC_HPC_DP5_M2C_P&quot;</td>
<td>&quot;AL3&quot;</td>
<td>A18 on J64</td>
</tr>
<tr>
<td>&quot;FMC_HPC_DP6_C2M_N&quot;</td>
<td>&quot;AN4&quot;</td>
<td>B37 on J64</td>
</tr>
<tr>
<td>&quot;FMC_HPC_DP6_C2M_P&quot;</td>
<td>&quot;AN3&quot;</td>
<td>B36 on J64</td>
</tr>
<tr>
<td>&quot;FMC_HPC_DP6_M2C_N&quot;</td>
<td>&quot;AM6&quot;</td>
<td>B17 on J64</td>
</tr>
<tr>
<td>&quot;FMC_HPC_DP6_M2C_P&quot;</td>
<td>&quot;AM5&quot;</td>
<td>B16 on J64</td>
</tr>
<tr>
<td>&quot;FMC_HPC_DP7_C2M_N&quot;</td>
<td>&quot;AP2&quot;</td>
<td>B33 on J64</td>
</tr>
<tr>
<td>&quot;FMC_HPC_DP7_C2M_P&quot;</td>
<td>&quot;AP1&quot;</td>
<td>B32 on J64</td>
</tr>
</tbody>
</table>
NET "FMC_HPC_DP7_M2C_N"  LOC = "AP6";  ## B13 on J64
NET "FMC_HPC_DP7_M2C_P"  LOC = "AP5";  ## B12 on J64
NET "FMC_HPC_GBTCLK0_M2C_N"  LOC = "AD5";  ## D5  on J64
NET "FMC_HPC_GBTCLK0_M2C_P"  LOC = "AD6";  ## D4  on J64
NET "FMC_HPC_GBTCLK1_M2C_N"  LOC = "AK5";  ## B21 on J64
NET "FMC_HPC_GBTCLK1_M2C_P"  LOC = "AK6";  ## B20 on J64
NET "FMC_HPC_HA00_CC_N"  LOC = "AF33";  ## F5  on J64
NET "FMC_HPC_HA00_CC_P"  LOC = "AE33";  ## F4  on J64
NET "FMC_HPC_HA01_CC_N"  LOC = "AC29";  ## E3  on J64
NET "FMC_HPC_HA01_CC_P"  LOC = "AD29";  ## E2  on J64
NET "FMC_HPC_HA02_N"  LOC = "AC25";  ## K8  on J64
NET "FMC_HPC_HA02_P"  LOC = "AB25";  ## K7  on J64
NET "FMC_HPC_HA03_N"  LOC = "Y26";  ## J7  on J64
NET "FMC_HPC_HA03_P"  LOC = "AA25";  ## J6  on J64
NET "FMC_HPC_HA04_N"  LOC = "AC28";  ## F8  on J64
NET "FMC_HPC_HA04_P"  LOC = "AB28";  ## F7  on J64
NET "FMC_HPC_HA05_N"  LOC = "AC27";  ## E7  on J64
NET "FMC_HPC_HA05_P"  LOC = "AB27";  ## E6  on J64
NET "FMC_HPC_HA06_N"  LOC = "AA29";  ## K11 on J64
NET "FMC_HPC_HA06_P"  LOC = "AA28";  ## K10 on J64
NET "FMC_HPC_HA07_N"  LOC = "AB26";  ## J10 on J64
NET "FMC_HPC_HA07_P"  LOC = "AA26";  ## J9  on J64
NET "FMC_HPC_HA08_N"  LOC = "AF31";  ## F11 on J64
NET "FMC_HPC_HA08_P"  LOC = "AG31";  ## F10 on J64
NET "FMC_HPC_HA09_N"  LOC = "AB31";  ## E10 on J64
NET "FMC_HPC_HA09_P"  LOC = "AB30";  ## E9  on J64
NET "FMC_HPC_HA10_N"  LOC = "AC34";  ## K14 on J64
NET "FMC_HPC_HA10_P"  LOC = "AD34";  ## K13 on J64
NET "FMC_HPC_HA11_N"  LOC = "AG32";  ## J13 on J64
NET "FMC_HPC_HA11_P"  LOC = "AG33";  ## J12 on J64
NET "FMC_HPC_HA12_N"  LOC = "AE32";  ## F14 on J64
NET "FMC_HPC_HA12_P"  LOC = "AD32";  ## F13 on J64
NET "FMC_HPC_HA13_N"  LOC = "AD31";  ## E13 on J64
NET "FMC_HPC_HA13_P"  LOC = "AE31";  ## E12 on J64
NET "FMC_HPC_HA14_N"  LOC = "AA31";  ## J16 on J64
NET "FMC_HPC_HA14_P"  LOC = "AA30";  ## J15 on J64
NET "FMC_HPC_HA15_N"  LOC = "AC32";  ## F17 on J64
NET "FMC_HPC_HA15_P"  LOC = "AB32";  ## F16 on J64
NET "FMC_HPC_HA16_N"  LOC = "AB33";  ## E16 on J64
NET "FMC_HPC_HA16_P"  LOC = "AC33";  ## E15 on J64
NET "FMC_HPC_HA17_CC_N"  LOC = "W30";  ## K17 on J64
NET "FMC_HPC_HA17_CC_P"  LOC = "V30";  ## K16 on J64
NET "FMC_HPC_HA18_N"  LOC = "T34";  ## J19 on J64
NET "FMC_HPC_HA18_P"  LOC = "T33";  ## J18 on J64
NET "FMC_HPC_HA19_N"  LOC = "U32";  ## F20 on J64
NET "FMC_HPC_HA19_P"  LOC = "U33";  ## F19 on J64
NET "FMC_HPC_HA20_N"  LOC = "V33";  ## E19 on J64
NET "FMC_HPC_HA20_P"  LOC = "V32";  ## E18 on J64
NET "FMC_HPC_HA21_N"  LOC = "U30";  ## K20 on J64
NET "FMC_HPC_HA21_P"  LOC = "U31";  ## K19 on J64
NET "FMC_HPC_HA22_N"  LOC = "V29";  ## J22 on J64
NET "FMC_HPC_HA22_P"  LOC = "U28";  ## J21 on J64
NET "FMC_HPC_HA23_N"  LOC = "U27";  ## K23 on J64
NET "FMC_HPC_HA23_P"  LOC = "U26";  ## K22 on J64
NET "FMC_HPC_HB00_CC_N"  LOC = "AG30";  ## K26 on J64
NET "FMC_HPC_HB00_CC_P"  LOC = "AF30";  ## K25 on J64
NET "FMC_HPC_HB01_N"  LOC = "AM32";  ## J25 on J64
NET "FMC_HPC_HB01_P"  LOC = "AN32";  ## J24 on J64
NET "FMC_HPC_HB02_N"  LOC = "AP33";  ## F23 on J64
NET "FMC_HPC_HB02_P"  LOC = "AP32";  ## F22 on J64
NET "FMC_HPC_HB03_N"  LOC = "AM31";  ## E22 on J64
NET "FMC_HPC_HB03_P"  LOC = "AL30";  ## E21 on J64
NET "FMC_HPC_HB04_N"  LOC = "AL33";  ## F26 on J64
NET "FMC_HPC_HB04_P"  LOC = "AM33";  ## F25 on J64
NET "FMC_HPC_HB05_N"  LOC = "AN34";  ## E25 on J64
NET "FMC_HPC_HB05_P"  LOC = "AN33";  ## E24 on J64
NET "FMC_HPC_HB06_CC_N"  LOC = "AE26";  ## K29 on J64
NET "FMC_HPC_HB06_CC_P"  LOC = "AF26";  ## K28 on J64
NET "FMC_HPC_HB07_N"  LOC = "AH34";  ## J28 on J64
NET "FMC_HPC_HB07_P"  LOC = "AJ34";  ## J27 on J64
NET "FMC_HPC_HB08_N"  LOC = "AK32";  ## F29 on J64
NET "FMC_HPC_HB08_P"  LOC = "AK33";  ## F28 on J64
NET "FMC_HPC_HB09_N"  LOC = "AK34";  ## E28 on J64
NET "FMC_HPC_HB09_P"  LOC = "AL34";  ## E27 on J64
NET "FMC_HPC_HB10_N"  LOC = "AF29";  ## K32 on J64
NET "FMC_HPC_HB10_P"  LOC = "AF28";  ## K31 on J64
NET "FMC_HPC_HB11_N"  LOC = "AJ30";  ## J31 on J64
NET "FMC_HPC_HB11_P"  LOC = "AJ29";  ## J30 on J64
NET "FMC_HPC_HB12_N"  LOC = "AJ32";  ## F32 on J64
NET "FMC_HPC_HB12_P"  LOC = "AJ31";  ## F31 on J64
NET "FMC_HPC_HB13_N"  LOC = "AH32";  ## E31 on J64
NET "FMC_HPC_HB13_P"  LOC = "AH33";  ## E30 on J64
NET "FMC_HPC_HB14_N"  LOC = "AD27";  ## K35 on J64
NET "FMC_HPC_HB14_P"  LOC = "AE27";  ## K34 on J64
NET "FMC_HPC_HB15_N"  LOC = "AE29";  ## J34 on J64
NET "FMC_HPC_HB15_P"  LOC = "AE28";  ## J33 on J64
NET "FMC_HPC_HB16_N"  LOC = "AH30";  ## F35 on J64
NET "FMC_HPC_HB16_P"  LOC = "AH29";  ## F34 on J64
NET "FMC_HPC_HB17_CC_N" LOC = "AG28"; ## K38 on J64
NET "FMC_HPC_HB17_CC_P" LOC = "AG27"; ## K37 on J64
NET "FMC_HPC_HB18_N" LOC = "AD26"; ## J37 on J64
NET "FMC_HPC_HB18_P" LOC = "AD25"; ## J36 on J64
NET "FMC_HPC_HB19_N" LOC = "AK31"; ## E34 on J64
NET "FMC_HPC_HB19_P" LOC = "AL31"; ## E33 on J64
NET "FMC_HPC_LA00_CC_N" LOC = "AF21"; ## G7 on J64
NET "FMC_HPC_LA00_CC_P" LOC = "AF20"; ## G6 on J64
NET "FMC_HPC_LA01_CC_N" LOC = "AL19"; ## D9 on J64
NET "FMC_HPC_LA01_CC_P" LOC = "AK19"; ## D8 on J64
NET "FMC_HPC_LA02_N" LOC = "AD20"; ## H8 on J64
NET "FMC_HPC_LA02_P" LOC = "AC20"; ## H7 on J64
NET "FMC_HPC_LA03_N" LOC = "AD19"; ## G10 on J64
NET "FMC_HPC_LA03_P" LOC = "AC19"; ## G9 on J64
NET "FMC_HPC_LA04_N" LOC = "AE19"; ## H11 on J64
NET "FMC_HPC_LA04_P" LOC = "AF19"; ## H10 on J64
NET "FMC_HPC_LA05_N" LOC = "AH22"; ## D12 on J64
NET "FMC_HPC_LA05_P" LOC = "AG22"; ## D11 on J64
NET "FMC_HPC_LA06_N" LOC = "AG21"; ## C11 on J64
NET "FMC_HPC_LA06_P" LOC = "AG20"; ## C10 on J64
NET "FMC_HPC_LA07_N" LOC = "AJ21"; ## H14 on J64
NET "FMC_HPC_LA07_P" LOC = "AK21"; ## H13 on J64
NET "FMC_HPC_LA08_N" LOC = "AJ22"; ## G13 on J64
NET "FMC_HPC_LA08_P" LOC = "AK22"; ## G12 on J64
NET "FMC_HPC_LA09_N" LOC = "AL18"; ## D15 on J64
NET "FMC_HPC_LA09_P" LOC = "AM18"; ## D14 on J64
NET "FMC_HPC_LA10_N" LOC = "AL20"; ## C15 on J64
NET "FMC_HPC_LA10_P" LOC = "AM20"; ## C14 on J64
NET "FMC_HPC_LA11_N" LOC = "AN22"; ## H17 on J64
NET "FMC_HPC_LA11_P" LOC = "AM22"; ## H16 on J64
NET "FMC_HPC_LA12_N" LOC = "AL21"; ## G16 on J64
NET "FMC_HPC_LA12_P" LOC = "AM21"; ## G15 on J64
NET "FMC_HPC_LA13_N" LOC = "AN18"; ## D18 on J64
NET "FMC_HPC_LA13_P" LOC = "AP19"; ## D17 on J64
NET "FMC_HPC_LA14_N" LOC = "AN20"; ## C19 on J64
NET "FMC_HPC_LA14_P" LOC = "AN19"; ## C18 on J64
NET "FMC_HPC_LA15_N" LOC = "AL23"; ## H20 on J64
NET "FMC_HPC_LA15_P" LOC = "AM23"; ## H19 on J64
NET "FMC_HPC_LA16_N" LOC = "AN23"; ## G19 on J64
NET "FMC_HPC_LA16_P" LOC = "AP22"; ## G18 on J64
NET "FMC_HPC_LA17_CC_N" LOC = "AM27"; ## D21 on J64
NET "FMC_HPC_LA17_CC_P" LOC = "AN27"; ## D20 on J64
NET "FMC_HPC_LA18_CC_N" LOC = "AJ25"; ## C23 on J64
NET "FMC_HPC_LA18_CC_P" LOC = "AH25"; ## C22 on J64
NET "FMC_HPC_LA19_N"    LOC = "AN24";  ## H23 on J64
NET "FMC_HPC_LA19_P"    LOC = "AN25";  ## H22 on J64
NET "FMC_HPC_LA20_N"    LOC = "AL24";  ## G22 on J64
NET "FMC_HPC_LA20_P"    LOC = "AK23";  ## G21 on J64
NET "FMC_HPC_LA21_N"    LOC = "AP29";  ## H26 on J64
NET "FMC_HPC_LA21_P"    LOC = "AN29";  ## H25 on J64
NET "FMC_HPC_LA22_N"    LOC = "AP26";  ## G25 on J64
NET "FMC_HPC_LA22_P"    LOC = "AP27";  ## G24 on J64
NET "FMC_HPC_LA23_N"    LOC = "AM26";  ## D24 on J64
NET "FMC_HPC_LA23_P"    LOC = "AM25";  ## D23 on J64
NET "FMC_HPC_LA24_N"    LOC = "AM30";  ## H29 on J64
NET "FMC_HPC_LA24_P"    LOC = "AN30";  ## H28 on J64
NET "FMC_HPC_LA25_N"    LOC = "AM28";  ## G28 on J64
NET "FMC_HPC_LA25_P"    LOC = "AN28";  ## G27 on J64
NET "FMC_HPC_LA26_N"    LOC = "AL25";  ## D27 on J64
NET "FMC_HPC_LA26_P"    LOC = "AP31";  ## C27 on J64
NET "FMC_HPC_LA27_N"    LOC = "AP30";  ## C26 on J64
NET "FMC_HPC_LA27_P"    LOC = "AJ27";  ## H32 on J64
NET "FMC_HPC_LA28_N"    LOC = "AK27";  ## H31 on J64
NET "FMC_HPC_LA28_P"    LOC = "AJ28";  ## H30 on J64
NET "FMC_HPC_LA29_N"    LOC = "AK28";  ## G31 on J64
NET "FMC_HPC_LA29_P"    LOC = "AL28";  ## G30 on J64
NET "FMC_HPC_LA30_N"    LOC = "AK24";  ## H35 on J64
NET "FMC_HPC_LA30_P"    LOC = "AJ24";  ## H34 on J64
NET "FMC_HPC_LA31_N"    LOC = "AK29";  ## G34 on J64
NET "FMC_HPC_LA31_P"    LOC = "AL29";  ## G33 on J64
NET "FMC_HPC_LA32_N"    LOC = "AG26";  ## H38 on J64
NET "FMC_HPC_LA32_P"    LOC = "AG25";  ## H37 on J64
NET "FMC_HPC_LA33_N"    LOC = "AH24";  ## G37 on J64
NET "FMC_HPC_LA33_P"    LOC = "AH23";  ## G36 on J64
NET "FMC_HPC_PG_M2C_LS" LOC = "J27";   ## F1 on J64
NET "FMC_HPC_PRSNT_M2C_L" LOC = "AP25";  ## H2 on J64

###
NET "FMC_LPC_CLK0_M2C_N" LOC = "B10";  ## H5 on J63
NET "FMC_LPC_CLK0_M2C_P" LOC = "A10";  ## H4 on J63
NET "FMC_LPC_CLK1_M2C_N" LOC = "G33";  ## G3 on J63
NET "FMC_LPC_CLK1_M2C_P" LOC = "F33";  ## G2 on J63
NET "FMC_LPC_D0_C2M_N"  LOC = "D2";   ## C3 on J63
NET "FMC_LPC_D0_C2M_P"  LOC = "D1";   ## C2 on J63
NET "FMC_LPC_D0_M2C_N"  LOC = "G4";   ## C7 on J63
NET "FMC_LPC_D0_M2C_P"  LOC = "G3";   ## C6 on J63
NET "FMC_LPC_GBTCLK0_M2C_N" LOC = "M5";  ## D5 on J63
NET "FMC_LPC_GBTCLK0_M2C_P" LOC = "M6";  ## D4 on J63
NET "FMC_LPC_IIC_SCL_LS" LOC = "AF13";  ## 2   of Q26
NET "FMC_LPC_IIC_SDA_LS" LOC = "AG13";  ## 2   of Q27
NET "FMC_LPC_LA00_CC_N" LOC = "K27";  ## G7  on J63
NET "FMC_LPC_LA00_CC_P" LOC = "K26";  ## G6  on J63
NET "FMC_LPC_LA01_CC_N" LOC = "E31";  ## D9  on J63
NET "FMC_LPC_LA01_CC_P" LOC = "F31";  ## D8  on J63
NET "FMC_LPC_LA02_CC_N" LOC = "H30";  ## H8  on J63
NET "FMC_LPC_LA02_CC_P" LOC = "G30";  ## G12 on J63
NET "FMC_LPC_LA03_CC_N" LOC = "G32";  ## G13 on J63
NET "FMC_LPC_LA03_CC_P" LOC = "J29";  ## H11 on J63
NET "FMC_LPC_LA04_CC_N" LOC = "J30";  ## H12 on J63
NET "FMC_LPC_LA04_CC_P" LOC = "K28";  ## G13 on J63
NET "FMC_LPC_LA05_CC_N" LOC = "H33";  ## H14 on J63
NET "FMC_LPC_LA05_CC_P" LOC = "H34";  ## H15 on J63
NET "FMC_LPC_LA06_CC_N" LOC = "K33";  ## G15 on J63
NET "FMC_LPC_LA06_CC_P" LOC = "K34";  ## G16 on J63
NET "FMC_LPC_LA07_CC_N" LOC = "C14";  ## C17 on J63
NET "FMC_LPC_LA07_CC_P" LOC = "C15";  ## C18 on J63
NET "FMC_LPC_LA08_CC_N" LOC = "C19";  ## C20 on J63
NET "FMC_LPC_LA08_CC_P" LOC = "C21";  ## C22 on J63
NET "FMC_LPC_LA09_CC_N" LOC = "N29";  ## D21 on J63
NET "FMC_LPC_LA09_CC_P" LOC = "N30";  ## D22 on J63
NET "FMC_LPC_LA10_CC_N" LOC = "L29";  ## C22 on J63
NET "FMC_LPC_LA10_CC_P" LOC = "L30";  ## C23 on J63
NET "FMC_LPC_LA11_CC_N" LOC = "M30";  ## H22 on J63
NET "FMC_LPC_LA11_CC_P" LOC = "R29";  ## G22 on J63
NET "FMC_LPC_LA12_CC_N" LOC = "P29";  ## G21 on J63
NET "FMC_LPC_LA21_N" LOC = "T26"; ## H26 on J63
NET "FMC_LPC_LA21_P" LOC = "R26"; ## H25 on J63
NET "FMC_LPC_LA22_N" LOC = "P27"; ## G25 on J63
NET "FMC_LPC_LA22_P" LOC = "N27"; ## G24 on J63
NET "FMC_LPC_LA23_N" LOC = "R27"; ## D24 on J63
NET "FMC_LPC_LA23_P" LOC = "R28"; ## D23 on J63
NET "FMC_LPC_LA24_N" LOC = "P32"; ## H29 on J63
NET "FMC_LPC_LA24_P" LOC = "N32"; ## H28 on J63
NET "FMC_LPC_LA25_N" LOC = "P30"; ## G28 on J63
NET "FMC_LPC_LA25_P" LOC = "P31"; ## G27 on J63
NET "FMC_LPC_LA26_N" LOC = "M32"; ## D27 on J63
NET "FMC_LPC_LA26_P" LOC = "L33"; ## D26 on J63
NET "FMC_LPC_LA27_N" LOC = "R32"; ## C27 on J63
NET "FMC_LPC_LA27_P" LOC = "R31"; ## C26 on J63
NET "FMC_LPC_LA28_N" LOC = "M33"; ## H32 on J63
NET "FMC_LPC_LA28_P" LOC = "N33"; ## H31 on J63
NET "FMC_LPC_LA29_N" LOC = "P34"; ## G31 on J63
NET "FMC_LPC_LA29_P" LOC = "N34"; ## G30 on J63
NET "FMC_LPC_LA30_N" LOC = "M27"; ## H35 on J63
NET "FMC_LPC_LA30_P" LOC = "M26"; ## H34 on J63
NET "FMC_LPC_LA31_N" LOC = "L31"; ## G34 on J63
NET "FMC_LPC_LA31_P" LOC = "M31"; ## G33 on J63
NET "FMC_LPC_LA32_N" LOC = "M25"; ## H38 on J63
NET "FMC_LPC_LA32_P" LOC = "N25"; ## H37 on J63
NET "FMC_LPC_LA33_N" LOC = "K31"; ## G37 on J63
NET "FMC_LPC_LA33_P" LOC = "K32"; ## G36 on J63
NET "FMC_LPC_PRSNT_M2C_L" LOC = "AD9"; ## H2 on J63